Laser-induced quantum coherence in a semiconductor quantum well.

نویسندگان

  • G B Serapiglia
  • E Paspalakis
  • C Sirtori
  • K L Vodopyanov
  • C C Phillips
چکیده

The phenomenon of electromagnetically induced quantum coherence is demonstrated between three confined electron subband levels in a quantum well which are almost equally spaced in energy. Applying a strong coupling field, two-photon resonant with the 1-3 intersubband transition, produces a pronounced narrow transparency feature in the 1-2 absorption line. This result can be understood in terms of all three states being simultaneously driven into "phase-locked" quantum coherence by a single coupling field. We describe the effect theoretically with a density matrix method and an adapted linear response theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a new asymmetric waveguide in InP-Based multi-quantum well laser

Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoreticall...

متن کامل

Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser

In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...

متن کامل

بررسی رفتار دمایی طیف گسیلی چاه‌های کوانتومی آلایش یافته با کمک مدل LSE

Thermal variation of PL peak energy of undoped nitride semiconductor quantum well shows a successive red-blue-red shifted emission (S-shaped behavior). This behavior has been attributed to the localization of excitons at the energy minima induced by the potential fluctuations in the quantum well structure and/or interface roughness. The S-shaped behavior of PL peak position, the thermal variati...

متن کامل

Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL)

Abstract: In this study, the effects of variation of thickness and the number of quantumwells as well as the contact length were investigated. In this paper, a vertical cavity surfaceemitting laser was simulated using of software based on finite element method. Thenumber of quantum wells was changed from 3 to 9 and the results which are related tooutput power, resonance ...

متن کامل

LASERS WITHOUT INVERSION: DENSITY OPERATOR METHOD

A quantum theory of a two and three-level laser with injected atomic coherence is developed by using a density operator method, to the best of our knowledge, for the first time. The initial atomic coherence plays an essential role. At steady state, the equation of motion for the density operator yields to exhibit laser without inversion and a phase locking but no threshold for the laser fie...

متن کامل

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2000